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RECONSTRUCTION OF LOCAL EQUILIBRIUM
TEMPERATURE FIELDS IN AN EMISSIVE MEDIUM

V. V. Pikalov and N. G. Preobrazhenskii UDC 533.9

A spectral method for determination of local temperatures in an emitting volume is discussed.
The problem of reconstruction of emissivity in the case of a medium of arbitrary configuration
is solved by regularization.

In a number of thermophysical problems, it is often necessary to determine temperature fields within
an emitting volume of plasma or of a high-temperature gas flow. The use of the methods of emission and ab-
sorption spectroscopy makes it possible to obtain the necessary pyrometric information without introducing
perturbations in the test medium. The procedure for finding the temperature T (x, y) after determination of
the emissivity e(x, y) and absorptivity ®(x, y) has been developed satisfactorily [1, 2], but generally the search
for these functions is a complex inverse problem. Actually, it is necessary to determine the coefficients of
the radiation-transport equation from values I(S) of the solution of this equation measured on the boundary of
the volume. The main results in this problem were obtained with reference to the particular case of axial sym-
metry where the problem becomes one-dimensional, If the absorptivity is negligibly small, (optically thin
layer), the problem reduces to a solution of the Abelian integral equation [1}

R
1(x)=2 [ _enrdr 1)

y orz—x2

where R is the radius of the emitting volume. However, cases with elliptical symmetry in e(x, y) can also be

reduced to such an equation. Let the orientation of an ellipse with semiaxes a and b be characterized by the
parameter t:

oy _ L )
XE ['_ a, a]v .l/E [_' b» b]’ 16 IO' a]'
Making measurements along the y axis, we obtain

b ¢ s()td a)

2V E—e
X

Ix)y=2 \g\ e(x, y)dy = 2

‘i.e., once again an Abelian equation but with respect to the isolines of an ellipse rather than a circle as in
Eq. (1), A deficiency of such a treatment of elliptical symmetry is the need for preliminary experimental
determination of the orientation of the test elliptical object in the laboratory coordinate system.

A large amount of work was devoted to solution of the Abelian equation by various methods including the
use of regularization of one kind or another [3-6]. A comparison was made [7] of a number of methods with
respect to the intensification of the experimental errors in them.

In the general case, the lack of symmetry in the problem is expressed in the form of an integral equa-
tion of the first kind: . .
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Fig. 1. Model functions e(r, 0), I(x',0), and results of the reconstruc-
tion of e(r, 0) @ =2.7, b=3.7,d =0, B =1, a =2.5). Coefficients of
variation: 1) 5; 2) 10; 3) 15%.

Fig. 2. Function g(r, 6) and results of its reconstruction by regulariza-
tion (parameters same as in Fig. 1).

1, 9= [ e pndy, (4)

where the laboratory reference frame (x', y') is rotated by an angle ¢ with respect to the coordinate sys-
tem (x, y) fixed in the object.

To solve this equation, expansions in terms of various systems of orthogonal polynomials [8-11] or
the Radon transformation {12-13}] were used but subsequent regularization was not performed.

The present work considers an algorithm for regularization of the solution of Eq. (4) based on an
expansion of the input data vector in a generalized Fourier series in terms of a special system of orthog-
onal polynomials {14] which are invariant with respect to rotation by limitation of summation in accord-
ance with the discrepancy principle [15].

Transforming to the polar coordinate system x = rcosd, y=rsing, we write the function sought in
the form

© o

a \? k! -
E(f, 9): (_n—) EXwM(_I)km exp(—:z.r)

m=0 k=0

X [Bmyor () cos m8 + Diny op (o) sin mB] (ar)"Li (?r?). (5)

Here, wy, = 0.5, wy, =1 (m = 0); LI{I{(a r?) are generalized Laguerre polynomials; ¢ is a parameter influ-
encing the rate of convergence of the series, and
T

By on(@) = § cosmidt | [1(x's ) Hppopn (@) -+ 1 (&', 0—8) Hpp o (— )] d',
® - )

Eid ©
Diyon(@) = | sinmtdt [ (') &) Hyon (@) — 1 (8, 70—8) Hppp (—ax')] ¥,
0 —o
where Hy, 4y (@x') are Hermite polynomials.

In the following, we consider cases where the function I(x', {) is symmetric with respect to { =0
(symmetry plane) so that the last expressions simplify to

Dirow(a) = 0;
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The coefficients Blg +okla) in the Fourier expansion are determined with included error because of the ex-

perimental nature of the function I(x', ¢) and hence the problem of summing the series (8) is an improper
problem [16].

One of the stable methods for summation of the Fourier series is limitation of the number of terms
in the series compatible with experimental error. Substituting the series (8) in Eq. (4) and carrying out
simple transformations, we obtain as an expression for the discrepancy

K
AW, § =T, §—n *exp(—a2e®) [0.5 3 2f(ax') Chi(a)
k=0 :

M K ,
- 2 m~1 cos mg ; Zmror (aX') Crison (a)J , (9)
m=.1 =0
where
Znsoe (@) = 27T R (m - BTV H, g (0, (10)

Chran(0) = [(m = 28) 1] mas (k1 (m + £)]' 2B 24 ()

The algorithm for regularization was constructed on the basis of a search for values of K and M such
that | A(x', §)|1 1, =562, where 6 is the norm of the error of a given function I(x', ¢). The algorithm given was
applied to the model functions

e(r, 8) = 2Bexp [— r2(a?sin2 0 - b2 cos? B) — b2d?] ch (26%rd cos 6), 1)

1 8 2BV o ( o a2y’ 2—pid? sin2 O )
X, E) = exp | — b2d? —
( V @%cos? 0 + bsin2d P a?cos? 0 4 b2sin26
2 in2
X ch| —2x'db?cost| 1 — (@—b) Sm_g ) s
a?cos?E + b2sin2§

which satisfy Eq. 4) exactly.

Figure 1 shows the general form of the functions e(r, 0) and I(x', 0), and Fig. 2 presents solutions
obtained with the scheme discussed above. To reduce the consumption of machine time, a discrepancy
criterion in the form llA(x', O)il = 62‘ was used. Experimental errors were simulated by a normal random
process with coefficients of variation of 5, 10, and 15%.

As shown by the figures, the algorithm developed shows little intensification of experimental "noise"
and can be recommended for analysis of spectral measurements in a thermophysical experiment.

NOTATION

Ix', §), recorded radiation intensity; e(r, 9), local emissivity; t, parameter; a, b, major and minor
semiaxes of ellipse; Bgll K@), Dgﬂk(a), coefficients of generalized Fourier series; A(x', ¢), discrepancy
function; B, constant coe?ficient; a, scale factor; zrmn sk (ox'),special polynomials; K, limit of summation of
series over k; M, limit of summation of series over m.

LITERATURE CITED

1. H. R. Griem, Plasma Spectroscopy, McGraw-Hill (1964).

2. R. MacWhirter, in: Plasma Diagnostic Techniques (edited by R. Huddlestone and S, Leonard), Aca-
demic Press (1965).

3. G. Minerbo and M. Levy, SIAM J. Numer. Anal., 6, No, 4 (1969).

4, M. I. Pergament, in: Physics and Application of Plasma Accelerators [in Russian]), Nauka i Tekhnika,
Minsk (1974).



[24]

. V. V. Pikalov and N. G. Preobrazhenskii, Fiz. Goreniya i Vzryva, 10, No. 6 (1974).
6. N. A. Magnitskii and S. A. Magnitskii, Preprint No, 118, Physics Institute, Academy of Sciences of
the USSR, Moscow (1976).
7. V. V. Pickalov, N. G. Preobrazhenskii, and G. 1. Smirnova, Proceedings of the Eighth International
Symposium on Discharging Electrons in an Insulated Vacuum, Novosibirsk (1976).
8. H. N. Olsen, C. D, Maldonado, and G. D. Duckworth, J. Quant. Spectrosc. Radiat. Transfer, 8, No, 7
(1968).
9. D. Sweeney and C. Vest, Appl. Opt,, 12, No, 11 (1973).
10. B. K. Vainshtein, Usp. Fiz. Nauk, 109, No. 3 (1973).
11. R. Bracewell and A. Riddle, Astrophys. J., 150, No. 2, 1 (1967).
12, I. N. Shtein, Radiotekh. Radioélektron., 17, No. 11 (1972).
13. Yu. P. Presnyakov, Opt. Spektrosk., 40, No. 1 (1976).
14. H. N, Olsen, C. D. Maldonado, C. D. Duckworth, and A. P. Caron, Contract AF 33(615)-1105, ARL
66-0016, California (1966).
15. V. A. Morozov, Zh. Vychisl. Mat. Mat. Fiz., 8, No. 2 (1968).
16. A. N, Tikhonov and V. Ya. Arsenin, Methods for Solution of Improper Problems [in Russian], Nauka,
Moscow (1974).

THE TEMPERATURE DEPENDENCE OF THE THERMAL
CONSTANTS OF COMPOSITE POLYMER MATERIALS

V. I. Strakhov, S§. I. Leonova, UDC 536.21
and A. N. Garashchenko

We developed a method for determination of the thermal-conductivity temperature dependence
of organic and fiberglass plastics at temperatures up to 1000°C from thermocouple measure-
ments by solving the inverse heat-conduction problem.

In the region of temperatures exceeding the minimum temperature of thermal decomposition of compo-
site polymer materials, the macrostructure and the chemical composition of the material change and the ther-
mal effects of the physicochemical transformations appear. These factors depend crucially on the rate and
conditions of heating and as a result, the traditional methods of measuring the thermal constants [1] are large-
ly inapplicable since these are based on the solution of the heat equation without taking into account the features
mentioned above. The determination of the thermal constants in this temperature region is made possible
using the temperature measurements in heating conditions close to those occurring in real situations by the
method of the inverse heat-conduction problem (IHCP).

The mathematical model describing the heat propagation in the composite polymer materials at high
temperatures should describe all relevant features of the process, and at the same time be sufficiently simple
from the point of view of practical applications. These requirements are satisfied by the heat equation written
in the form

i
!

AN ANNE S
01 Ox ox ox
(1)

X

F o (1= Dy + poll — K@ 253 G = 015 X .
*bd

The majority of the physical parameters appearing in the heat equation (1) (, Kmes f» Qs pgs P2y €4) c2n
be determined by existing methods. To determine the specific heat ¢, and the thermal conductivity A it is neces-

sary to use IHCP.
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